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Abstract. In this paper an interplay between the effects of disorder, interlayer coupling and 
magnetic field is studied in the disordered layered system. We present a crossover effect of 
dimensionality of the system, which depends on both the magnetic field H and the interlayer 
coupling t. The corrections of conductivity, Au,(H,  T ) ,  corresponding to the maximal 
crossed diagrams are calculated. It is shown that the conductivities in different directions are 
anisotropic. 

1. Introduction 

In the study of the metal-insulator transition in Anderson localisation [l] ,  it is shown 
from perturbation theory [2,3] that for weak disorder, i.e for (KFl)-’  < 1, where KF is 
the Fermi velocity and 1 the mean-free path, if time reversal symmetry is satisfied, the 
quantum interference effects will lead to the occurrence of Anderson localisation. 
However, an external magnetic field breaks time reversal symmetry, the interference 
will be destroyed, resulting in the suppression of the effect of localisation [4]. In two 
dimensions one could consider the weak-field case W,Z 1, LO, being the cyclotron 
frequency and z the mean scattering time, the resulting correction of the conductivity 
da, - In H [5], which means that there exists the so-called negative magnetoresistance 
effect. This effect was experimentally observed on Si inversion layers [6,7]. 

In this paper a model of a disordered layered system in an external magnetic field is 
studied. In recent years there has been a resurgence of interest in the properties of the 
disordered multilayered materials both theoretically and experimentally [&lo]. Our 
model simulating this structure is composed of 2~ like disordered layers and between 
them insulating materials intercalated. By varying the thickness of insulating materials, 
the interlayer coupling t whose value characterises the strength of interlayer coupling, 
could be changed, and then the crossover behaviour from 2~ to 3~ may occur in the 
system. We assume that a magnetic field H is applied along the z axis perpendicular to 
the layer and put 

A = (0, H x ,  0). 
In the presence of weak magnetic field satisfying W,Z -e 1, we studied the interplay 

$ Present address: Department of Physics, Fudan University, Shanghai, People’s Republic of China 

0953-8984/89/479413 + 08 $02.50 @ 1989 IOP Publishing Ltd 9413 



9414 Qi Jiang and Chang-de Gong 

between disorder, interlayer coupling and magnetic field. We have obtained the cross- 
over behaviour of the conductivities, depending on the applied magnetic field, from ZD 
to 3 ~ .  It is pointed out that for fields such that LH = (hc/eH)l/* > L,, L, = VF/t being the 
characteristic length in the layered system, the system has 3~ characteristics, otherwise 
the system behaves like a 2D one. In the presence of a magnetic field the corrections 
of the conductivities, Aaj(H, T )  ( j  = 11, I) corresponding to the maximally crossed 
diagrams have been calculated. It is found that in the limit t +  0, we obtain 
Aq(H,  T )  - In H,andin3D,Auj(H, T )  - WealsonotethatAuj(H, T)indifferent 
directions are anisotropic. 

In the following, we are confined to discussing non-interacting electron systems. We 
assume the impurity potential to be effective only within a given layer. Then the 
potentials located on different layers are statistically independent. 

2. The vertex functions in the magnetic field 

In general, in a magnetic field an electron undergoes cyclotron motion in a limited space 
even without disorder, and it might seem that the localisation is enhanced. This argument 
might be correct if the mean scattering time t is long enough for an electron to perform 
cyclotron motion, i.e. if ~ , t  9 1.  On the other hand, if magnetic field is very weak, i.e. 
if W,Z 1, this argument will not be true. It is found that the conductivities are sensitively 
affected by the applied magnetic field. In the case of a weak magnetic field the effects of 
energy level quantisation do not show up. Nevertheless, the modification of the phase 
of the wavefunctions should not be neglected, and we have 

A(r ‘ )  . dr’ Y(r) 
ro 1 

where H = V x A .  If an electron propagates along a closed path, the phase shift after 
the motion is given by 

(e/hc) A(r’)  dr‘ = eQ,/hc (2) P 
where Q, is the magnetic flux penetrating inside the closed path. The phase shift of an 
electron propagating along the same path in the opposite direction is the same as (2) 
with the opposite sign. If the linear dimension of the closed path is L ,  then Q, is of the 
order HL2.  Thus it is expected that the phase difference of the order HL2 appears 
between two waves propagating on the reversed course. If the difference becomes of 
the order of unity, the quantum interference resulting in the localisation will be 
destroyed. For this case a characteristic length is estimated as 

L H  - (hc/eH)l’’. (3) 

Since L H  B I ,  in the following the cutoff parameters 1/1 for the case without magnetic 
field [4] will be replaced by l /LH.  
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If G(r, r’ ,  E )  is the Green function in the absence of an external magnetic field then 
in the presence of a magnetic field it is given by 

G H ( r ,  r’ ,  E )  = G(r, r ’ ,  E )  exp (4) 

It suffices to study the vertex functions rH(r,  r’,  w )  which contribute to the conductivities 
with Kubo formula. In real space the Dyson equation with respect to rH is given by 

r H ( r ,  r ’ ,  w )  = niu26(r  - r’)  + niu2 nH(r, r l ,  w ) r H ( r l ,  r’,  01 ( 5 )  
r i  

where 

IIH(r, r’, w )  = GE(r, r’w)Gk(r ,  r’, E - w )  (6) 

ni is the density of impurities on layers, u 2  the mean-square impurity potential and 
GE(A)(r, r ’ ,  E )  represent the retarded (advanced) Green function in the presence of the 
field. 

Putting (4) into (6) we can obtain 

IIH(r,  r’ ,  w )  = II(r ( 7 )  

where 

II(r * r ‘ ,  w )  = GR(r, r ’ ,  c)GA(r, r ’ ,  E - w). (8) 

We know from ( 5 )  that in order to evaluate rH(r,  r’ ,  w ) ,  it is necessary to find out the 
solution of IIH(r, r ’ ,  w).  In the following we extend the methods of Altshuler eta1 [5]  to 
the study of the anisotropic layered system. For this purpose we consider nH(r, r’ ,  w )  
as an operator with its eigenfunctions q,(r)  such that 

namely 

1 II(r, r’w) exp (2ielhc) A ( s )  - ds V, ( r ’ )  dr’  = A(q)Vq(r).  (10) ( $ ,  
Using the identical equation [ l l ]  we obtain 

W,(r’) = exp[-i(r - r’)(V/i + 2eA/hc)]1$,(r). (11) 

At the present, weputA= (0, Hx,  0), and definer = ( T I , ,  r l )  and V = (Vll, VJ, with rll = 
( x , y ) ,  rl = z ,  Vi] = (8 /8x,  a la r )  and ]V,] = 8/82. Expanding A(r) and q,(r) about rll 
and rl up to second order, we have 
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On the other hand, in the absence of the magnetic field we may define the Fourier 
transform of n(r, r ' ,  o) as 

a 2  
dr' = - - n(q, o) 1 n(r, r' ,  0) (rll - 

aqii I q=O 

Putting (12), (14) and (15) into (lo), we obtain 

Defining 

(VlI/i + 2 e A / h ~ ) ~  
q = o  

We could rewrite (16) as 

[ ( 1 / 2 m ~ , ) ( V l ~ / i  + 2 e A / V 2  - (1/2ml)V:lvq(r)  = A'(v)%)(r)* (18) 

Equation (18) demonstrates that the eigenfunctions of nH(r, r' ,  w )  are identical with 
the wavefunctions of a doubly charged particle of anisotropic mass in different directions 
in a magnetic field along the z axis. The results of this eigenvalue problem are well 
known, and from (17) we have (taking c = 1 )  

A,, = n(q = 0, w )  + ( n  + f)2ehH/mli + q:/2mL. (19) 

In the absence of the magnetic field we have determined n(q, o) [lo] as follows 

n(q, w )  = (2?GN(EF)z/h)[1 + iwz - D f q i t  - D",(I - cos q,a)/a2] (20) 

with N(EF) the density of states at the Fermi level and Df and DT the bare diffusion 
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coefficients parallel and perpendicular to the layer. Here D l  = V$z/2, and 
D: = t 2a2z ,  a being the interlayer spacing and t the interlayer coupling. We obtain 

A n  = (2nN(EF)t/h)[1 + iwz - ( n  + ; ) 4 e ~ ~ i z / h  - D",;z]. (21) 

It could be seen from (21) that in the magnetic field the term (Vll/i + 2eA/h)*is quantised, 
that is 

qi + (n  + 4)4eH/h. (22) 
We may obtain I IH(r ,  r ' ,  w) by multiplying (9) by vq(r") and summing over all q .  It is 
given by 

n H ( r 3  r ' ,  w )  = (2nN(EF)r/h)(2H/nfi) v n ( r ) q z  ( r ' )  
n 

X [ l  + iwz - (n  + $ ) 4 e H D I t / h  - D:q;z] .  (23) 
Hence putting (23) into (5), we can obtain the vertex functions in the coordinate 
representation in the form 

r H ( r ,  r ' ,  0) = (1/2nN(E,)t2)(2H/nJ1) qn(r)q:  ( r ' )  
n 

X [ (n  + B)LteHD[i/h + q: D: - io]- ' .  

r H ( q / l ,  41, 0) = ( 1 / 2 7 d N ( E ~ ) Z ~ ) l / [ ( n + ; ) 4 e H D / i / h + q ' l D ~  - io]. 

(24) 

(25)  

We expand r H ( r ,  r ' ,  w) about qq(r ) ,  obtaining: 

It is easy to see from (25) that application of a magnetic field introduces a cut-off of the 
pole appearing in r(q, w) for the case with H = 0 [4].  This will result in the suppression 
of the effect of localisation. 

3. The corrections of conductivities and crossover of dimensionality in the layered system 

The effect of the weak magnetic field on the Green function can only be taken into 
account as a phase shift. Thus the Kubo formalism [5] can be used to calculate the 
corrections of conductivities for the layered system in the magnetic field. The corrections 
of conductivities for the maximal cross diagrams can be obtained by using (25). We have 

i i l4eHrDI 

x 2 D f / [ ( n  + t ) 4 e H D I / h  + D y q :  - i o ]  
n=O 

X D y / [ ( n  + 4)4eHD[i/h + D:q; - io ]  
n=O 
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where 6011 and 60, are the corrections of conductivities parallel and perpendicular to 
the layer. The integration over q1 in (26) should be performed over the whole Brillouin 
zone - n / a  < q1 < n / a .  However, we limit the sum to n < h/4eHtD[i. It is found from 
(26) that the pole in the situation with H = 0 has been removed, resulting in the effect 
of delocalisation in the system. It follows from (26) that 

6Oil (0, H)/% (o, H )  = D I D ? .  (27) 
Therefore, we only discuss the situations of 6q(o, H )  in the following. The temperature 
dependences of Soil(o, H )  can be obtained by replacing (-io) in (26) by l / t i n ,  where 
tin is the inelastic scattering time. Performing the integration over q ,  in (26), we have 
(for simplicity, taking h = 1): 

6Ol\(T, H )  = - (e2 /n3) (D~/DOI)1/2(1 /LH)  

with 6 = 1/4eHt,, 01, and LH = (l/eH)’/’. We finally obtain the forms of the quantum 
corrections of conductivities in the layered system. It is evident from (28) that the 
conductivities are anisotropic. We discuss the influence of the interlayer coupling t on 
the conductivities, and if LH < L, = VF/t, then from (28) we obtain 

Thus Sail(T, H )  is almost independent of the coupling t .  This means that the layer is 
effectively uncoupled from other such adjacent layers. Performing the summation over 
n ,  the following relation holds true: 

(30) 
where q is the digamma function, and use has been made of the limits kF l+  1, and 
W,T G l .  If temperature is higher, such that LH 9 LT, LT being the Thouless length with 
LT = ( D p ~ ~ , , ) l / ~ ,  then from (30) we obtain 

6oil(T, H )  = - (e2/2n2a)[ln(1/4eHtD\) - q(4 + 1/4eHti,Df/)] 

601, = - (e2 /2n2a)  ln( t in/ t ) .  (31) 

It is seen explicitly from (31) that a logarithmic dependence on tin is revealed, consistent 
with that of two dimensions [5]. 

For LH < LT, from (30) we have a logarithmic dependence on H by 

6011 - In(4eHDft). (32) 
This predicts a negative magnetoresistance, as it should, resulting in the suppression of 
the localisation effect. Equation (32) has typical two-dimensional characteristics. 

For all the above, it is shown that if the inequality LH < L, is satisfied, the system 
behaves like a 2~ one. Let us now give an interpretation of the results. Firstly, for a 
certain magnetic field H ,  if the interlayer coupling tis very small, such that LH < L,, the 
layered system is considered as stacks of 2D layers which are independent of each other. 
Thus the spatial dimensionality of the system is two. On the other hand, for a certain 
interlayer coupling t ,  if the above inequality also is needed, then a large magnetic field 
H will make the system have a crossover behaviour from 3D to 2 ~ ,  even though in the 
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absence of the field the coupling t is  enough to make it possible to locate the system in 
3D. This argument might be checked by experiments. 

If LH > L,, we know from (28) that the system behaves like a 3~ one. In the weak 
magnetic field, we confine ourselves to the case LH + I ,  with I = Hence taking 
the limit of the summation in (28) as infinite, we obtain for LH % a, 

If the correction of conductivity in the limit of H-+ 0, is denoted by 6 q ( T ,  O ) ,  the 
magnetoconductivity is given by 

A q V ,  H )  = S q ( T ,  H )  - 6all(T, 0). (34) 

Aaii(T, H )  = (C1e2/2n2L,)(D0/DP)’:’ (35) 

At low temperature or strong magnetic field, with LH < LT, from (33)  and (34) we obtain 

where C! = 0.605. Hence apower dependence on His  given. This is a typical charcteristic 
in 3D, and the negative magnetoresistance effect appears in the system. For the layered 
structure, it is easy to see from (35) that the correction of conductivities is anisotropic, 
as it should be. 

If LH 9 LT, corresponding to high temperature or weak magnetic field, we have 

Aali(T, H )  = (C2e2/2n2L,)(D~/D0,)’’26-3/2 (36) 

with C2 = 1/48. Thus it gives the results with A q (  T ,  H )  - H 2 .  
From the above we may conclude that for a certain magnetic field H ,  when LH > L,, 

the system is located in 3D for larger interlayer coupling t .  On the other hand, if the 
inequality is satisfied for a certain coupling t ,  a weak magnetic field may make it possible 
to cross from 2D to 3D in the dimensionality of the system, even if the coupling t is so 
small that the system is located in 2~ spatially in the absence of the magnetic field. This 
implies that delocalisation may appear in the system. 

4. Discussion 

It has been noted in [13] that the field dependence of magnetoresistance has been 
considered for a magnetic field applied parallel or perpendicular to the plane in two- 
dimensional systems with effects of Zeeman splitting and spin-orbit scattering, and that 
the characteristic anisotropy has arisen from geometries of both parallel and per- 
pendicular fields rather than from the interlayer coupling. Furthermore, in their discus- 
sion, crossover effect of dimensionality has not been investigated. In contrast, our results 
presented here may provide some information about an interplay between the effects 
of disorder, interlayer coupling and magnetic field. It is proved that in the presence of a 
perpendicular magnetic field the crossover of dimensionality in the layered system 
depends not only on the applied magnetic fields, but also on the interlayer coupling t .  
It has been shown that the corrections of conductivities in different directions are 
anisotropic. The general feature of anisotropic layered structures has been reflected in 
the expressions of Saj - (Di/DT)’/’ ,  i.e. 6aj depends on the interlayer coupling t .  

In conclusion, we point out that the present results can be verified within the 
framework of scaling theory of localisation. A general scaling claim is made that the 
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conductivity can be scaled with an effective length which may depend on L,, LH, LT, etc. 
In a previous paper [lo] we applied a single parameter scaling theory to the disordered 
layered system without a magnetic field. Let g(Lli, L,) be a dimensionless conductance 
of a sample of the size LIl  L I .  Firstly, we considered the transverse dimension L ,  to 
be of the order of the interlayer distance a ,  and the conductance g ,  depending on the 
parallel size Ll1, undergoing a scaling transformation starting from 1 ( 1  is the mean-free 
path). For Ll, < L, the scaling equation for g should be the same as in the pure 2D case. 
For Lll= L, a crossover from 2~ to 3~ behaviour took place. If L ,  - Lll, and LI, > L,, we 
could scale both L11 and L ,  with the same factor. The scaling transformation followed 
the 3~ scaling equation. In the presence of a magnetic field, a similar procedure could 
be made by adding LH as an additional length. In fact our approach in the present paper 
is nothing but the realisation of that program within diagrammatical description. 

Finally, the method given here needs to be essentially improved in order to consider 
the case in the presence of a strong magnetic field where the quantum Hall effect would 
appear. 
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